Python Exercise: Display first 5 rows from COVID-19 dataset
Python Project: COVID-19 Exercise-1 with Solution
Write a Python program to display first 5 rows from COVID-19 dataset. Also print the dataset information and check the missing values.
Sample Solution:
Python Code:
import pandas as pd
covid_data= pd.read_csv('https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_daily_reports/03-17-2020.csv')
print(covid_data)
print("\nDataset information:")
print(covid_data.info())
print("\nMissing data information:")
print(covid_data.isna().sum())
Sample Output:
Dataset information: <class 'pandas.core.frame.DataFrame'> Province/State ... Longitude 0 Hubei ... 112.2707 1 NaN ... 12.5674 2 NaN ... 53.6880 3 NaN ... -3.7492 4 NaN ... 10.4515 5 NaN ... 127.7669 6 France ... 2.2137 7 NaN ... 8.2275 8 United Kingdom ... -3.4360 9 New York ... -74.9481 10 Netherlands ... 5.2913 11 NaN ... 8.4689 12 Guangdong ... 113.4244 13 NaN ... 14.5501 14 Henan ... 113.6140 15 NaN ... 4.4699 16 Zhejiang ... 120.0934 17 NaN ... 18.6435 18 Washington ... -121.4905 19 Hunan ... 111.7088 20 Anhui ... 117.2264 21 Denmark ... 9.5018 22 Jiangxi ... 115.7221 23 NaN ... 138.2529 24 Shandong ... 118.1498 25 California ... -119.6816 26 Diamond Princess ... 139.6649 27 NaN ... 101.9758 28 Jiangsu ... 119.4550 29 Chongqing ... 107.8740 30 Sichuan ... 102.7103 31 Heilongjiang ... 127.7615 32 Beijing ... 116.4142 33 NaN ... -8.2245 34 NaN ... 51.1839 35 NaN ... 15.4730 36 NaN ... 21.8243 37 Shanghai ... 121.4491 38 NaN ... 34.8516 39 NaN ... -51.9253 40 NaN ... 25.7482 41 Hebei ... 114.5149 42 Fujian ... 117.9874 43 NaN ... 14.9955 44 New Jersey ... -74.5210 45 NaN ... 103.8198 46 Guangxi ... 108.7881 47 Shaanxi ... 108.8701 48 NaN ... 19.1451 49 NaN ... 69.3451 50 NaN ... 50.5577 51 NaN ... 25.0136 52 NaN ... -7.6921 53 NaN ... -19.0208 54 Massachusetts ... -71.5301 55 Florida ... -81.6868 56 New South Wales ... 151.2093 57 NaN ... -71.5430 58 NaN ... 30.8025 59 Louisiana ... -91.8678 60 NaN ... 121.7740 61 Ontario ... -85.3232 62 NaN ... 24.9668 63 NaN ... 100.9925 64 Yunnan ... 101.4870 65 NaN ... 113.9213 66 NaN ... 45.0792 67 Hainan ... 109.7453 68 Hong Kong ... 114.2000 69 Illinois ... -88.9861 70 Colorado ... -105.3111 71 NaN ... 43.6793 72 Guizhou ... 106.8748 73 Georgia ... -83.6431 74 NaN ... 78.9629 75 NaN ... 6.1296 76 Tianjin ... 117.3230 77 Gansu ... 103.8343 78 Shanxi ... 112.2922 79 NaN ... 47.4818 80 Liaoning ... 122.6085 81 NaN ... 35.8623 82 NaN ... -75.0152 83 NaN ... 105.3188 84 Pennsylvania ... -77.2098 85 Texas ... -97.5635 86 NaN ... 12.4578 87 British Columbia ... -127.6476 88 NaN ... 53.8478 89 Victoria ... 144.9631 90 Jilin ... 126.1923 91 NaN ... -102.5528 92 NaN ... 45.0382 93 Queensland ... 153.4000 94 NaN ... 121.0000 95 Xinjiang ... 85.2401 96 Inner Mongolia ... 113.9448 97 Ningxia ... 106.1655 98 Alberta ... -116.5765 99 Quebec ... -73.5491 100 Tennessee ... -86.6923 101 NaN ... 19.6990 102 Wisconsin ... -89.6165 103 NaN ... -80.7821 104 NaN ... -63.6167 105 Connecticut ... -72.7554 106 NaN ... 25.4858 107 Ohio ... -82.7649 108 Virginia ... -78.1700 109 Oregon ... -122.0709 110 NaN ... 108.2772 111 NaN ... -74.2973 112 NaN ... 15.2000 113 NaN ... 21.0059 114 Michigan ... -84.5361 115 North Carolina ... -79.8064 116 NaN ... 22.9375 117 NaN ... 1.6596 118 Maryland ... -76.8021 119 Minnesota ... -93.9002 120 NaN ... -78.1834 121 NaN ... 114.7277 122 Nevada ... -117.0554 123 NaN ... 20.1683 124 Utah ... -111.8624 125 NaN ... 19.5033 126 NaN ... 24.6032 127 Faroe Islands ... -6.9118 128 NaN ... 35.2433 129 Diamond Princess ... 139.6380 130 South Carolina ... -80.9450 131 NaN ... 33.4299 132 NaN ... 80.7718 133 NaN ... -83.7534 134 NaN ... 1.5218 135 Alabama ... -86.9023 136 NaN ... 14.3754 137 NaN ... -7.0926 138 NaN ... 27.9534 139 NaN ... 43.3569 140 NaN ... 36.2384 141 NaN ... 104.9910 142 NaN ... 66.9237 143 NaN ... -66.5897 144 Maine ... -69.3819 145 Western Australia ... 115.8605 146 NaN ... 28.3699 147 Indiana ... -86.2583 148 South Australia ... 138.6007 149 NaN ... -55.7658 150 NaN ... 47.5769 151 NaN ... 17.6791 152 NaN ... 21.7453 153 NaN ... -14.4524 154 Kentucky ... -84.6701 155 New Hampshire ... -71.5639 156 NaN ... 23.8813 157 NaN ... 55.9754 158 NaN ... 9.5375 159 Iowa ... -93.2105 160 New Mexico ... -106.2485 161 Rhode Island ... -71.5118 162 NaN ... 67.7100 163 Arkansas ... -92.3731 164 District of Columbia ... -77.0268 165 NaN ... -70.1627 166 Grand Princess ... -122.6655 167 Mississippi ... -89.6787 168 Nebraska ... -98.2681 169 Arizona ... -111.4312 170 Oklahoma ... -96.9289 171 Qinghai ... 95.9956 172 NaN ... -61.5510 173 Kansas ... -96.7265 174 NaN ... -61.0242 175 Delaware ... -75.5071 176 NaN ... -1.5616 177 NaN ... 31.1656 178 NaN ... 73.2207 179 Macau ... 113.5500 180 NaN ... -77.2975 181 NaN ... 174.8860 182 Vermont ... -72.7107 183 NaN ... -63.5887 184 NaN ... -53.1258 185 Missouri ... -92.2884 186 South Dakota ... -99.4388 187 Wyoming ... -107.3025 188 NaN ... 90.3563 189 NaN ... 11.5021 190 Hawaii ... -157.4983 191 NaN ... 64.5853 192 Reunion ... 55.2471 193 NaN ... -58.4438 194 NaN ... 55.5364 195 Montana ... -110.4544 196 Grand Princess ... -122.6655 197 Manitoba ... -98.8139 198 New Brunswick ... -66.4619 199 NaN ... -86.2419 200 Idaho ... -114.4788 201 Tasmania ... 145.9707 202 Nova Scotia ... -63.7443 203 Saskatchewan ... -106.4509 204 French Guiana ... -53.0000 205 NaN ... -1.0232 206 NaN ... -58.9302 207 NaN ... 9.5554 208 NaN ... 7.4246 209 NaN ... 29.8739 210 Guadeloupe ... -61.5833 211 NaN ... -90.2308 212 Channel Islands ... -2.3644 213 NaN ... -5.5471 214 NaN ... -77.7812 215 NaN ... 40.4897 216 NaN ... 103.8467 217 NaN ... -61.2225 218 Puerto Rico ... -66.5901 219 NaN ... 55.4920 220 NaN ... -69.9683 221 Newfoundland and Labrador ... -57.6604 222 NaN ... 21.7587 223 French Polynesia ... -149.4068 224 Saint Barthelemy ... -62.8333 225 NaN ... 144.7937 226 NaN ... 37.9062 227 Curacao ... -68.9900 228 NaN ... 8.6753 229 Alaska ... -152.4044 230 Guam ... 144.7937 231 North Dakota ... -99.7840 232 Gibraltar ... -5.3536 233 Australian Capital Territory ... 149.0124 234 NaN ... -59.5432 235 St Martin ... -63.0501 236 NaN ... 20.9030 237 NaN ... 19.3000 238 NaN ... 18.4904 239 NaN ... -60.9789 240 Virgin Islands ... -64.8963 241 NaN ... -61.7964 242 Northern Territory ... 130.8456 243 NaN ... 2.3158 244 NaN ... 90.4336 245 Prince Edward Island ... -63.4168 246 NaN ... 20.9394 247 Tibet ... 88.0924 248 NaN ... 15.8277 249 NaN ... 10.0000 250 NaN ... 31.4659 251 Mayotte ... 45.1383 252 NaN ... 11.6094 253 NaN ... -42.6043 254 NaN ... -9.6966 255 NaN ... 12.4534 256 NaN ... -9.4295 257 NaN ... -10.9408 258 NaN ... 45.1662 259 NaN ... 84.1240 260 NaN ... -61.2872 261 NaN ... 46.1996 262 NaN ... 30.2176 263 NaN ... -56.0278 264 NaN ... 34.8888 265 NaN ... -76.0000 266 NaN ... -16.6000 267 NaN ... 0.8248 268 West Virginia ... -80.9545 269 Cayman Islands ... -81.2546 270 From Diamond Princess ... 139.6380 271 NaN ... -2.5800 272 NaN ... -2.1100 273 NaN ... -66.5000 274 NaN ... 15.5560 275 NaN ... 35.2332 [276 rows x 8 columns] Dataset information:RangeIndex: 276 entries, 0 to 275 Data columns (total 8 columns): Province/State 126 non-null object Country/Region 276 non-null object Last Update 276 non-null object Confirmed 276 non-null int64 Deaths 276 non-null int64 Recovered 276 non-null int64 Latitude 276 non-null float64 Longitude 276 non-null float64 dtypes: float64(2), int64(3), object(3) memory usage: 17.4+ KB None Missing data information: Province/State 150 Country/Region 0 Last Update 0 Confirmed 0 Deaths 0 Recovered 0 Latitude 0 Longitude 0 dtype: int64
Python Code Editor:
Have another way to solve this solution? Contribute your code (and comments) through Disqus.
Previous: Python Project Covid-19 Exercise Home.
Next: Write a Python program to get the latest number of confirmed, deaths, recovered and active cases of Novel Coronavirus (COVID-19) Country wise.
What is the difficulty level of this exercise?
Python: Tips of the Day
Groups the elements of a list based on the given function.
Example:
def tips_group_by(lst, fn): return {key : [el for el in lst if fn(el) == key] for key in map(fn, lst)} from math import floor print(tips_group_by([5.5, 4.2, 6.3], floor)) print(tips_group_by(['mango', 'apple', 'banana'], len))
Output:
{5: [5.5], 4: [4.2], 6: [6.3]} {5: ['mango', 'apple'], 6: ['banana']}
- New Content published on w3resource:
- Scala Programming Exercises, Practice, Solution
- Python Itertools exercises
- Python Numpy exercises
- Python GeoPy Package exercises
- Python Pandas exercises
- Python nltk exercises
- Python BeautifulSoup exercises
- Form Template
- Composer - PHP Package Manager
- PHPUnit - PHP Testing
- Laravel - PHP Framework
- Angular - JavaScript Framework
- React - JavaScript Library
- Vue - JavaScript Framework
- Jest - JavaScript Testing Framework